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Abstract. Applications running in virtual environments often experi-
ence high communication latencies that might be problematic if such
applications are characterized by strict temporal constraints. In this
work, such high latencies are investigated with a focus on Kubernetes
containers and on the software mechanisms used by many CNI plugins
to interconnect them: network namespaces, virtual ethernet pairs, and
software bridges. Our experiments show that virtual ethernet pairs and
network namespaces introduce a negligible overhead, while most of the
overhead is introduced by Netfilter rules and by traversing the network
stack multiple times. Moreover, the worst-case latencies experienced by
UDP packets exchanged between different containers are much larger
than the average latencies because of the Linux “softirq” mechanism.
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1 Introduction

In recent years, computing infrastructures have experienced an important paradigm
shift, moving more and more applications to virtualized environments and clouds
based on containers or VMs and virtualized networks. This tendency has impor-
tant consequences for both compute and network virtualization, stressing some
performance requirements in terms of compute and networking bandwidth, pre-
dictable execution and message passing, and low latency. As a result, cloud
technologies are evolving to support these applications.

Focusing on applications characterized by strict temporal constraints, it could
be interesting to take advantage of the cloud features to provide high reliability
or fault tolerance. Guaranteeing that all applications’ requirements, including
temporal requirements, are respected under various conditions and failure sce-
narios. Unfortunately, current cloud infrastructures do not fully support this
vision [10], and some work is needed from both the theoretical and practical
points of view to implement the needed features. The theoretical aspects of this
issue can be addressed by combining real-time theory with cloud computing in a
novel way; for example, applications characterized by strict timing and reliabil-
ity requirements can be modelled as Directed Acyclic Graphs (DAGs) composed



2 L. Abeni et al.

of tasks implemented by replicated microservices [1, 3]. This approach provides
a powerful formal model to analyze the real-time and fault-tolerance properties
of a virtualized system/application, and previous research works show that the
analytical results obtained through this model match with simulative results.

However, when evaluating a practical implementation of this model on Ku-
bernetes [12], it was noticed that a worst-case communication delay of about
300 µs between microservices needed to be accounted for to have a reasonable
match between theoretical analysis and experimental results. This issue is due
to that previous work focused on the computational aspects of real-time cloud
systems without providing an appropriate model for the latencies introduced by
inter-container (inter-service) communication. This paper starts investigating
the worst-case communication delays between Kubernetes containers, to pro-
vide better support for a holistic model of a real-time fault-tolerant cloud that
can be effectively implemented. After reviewing the related work (which mainly
focuses on average performance) in Section 2, Section 3 recalls the basics of net-
work virtualization in Kubernetes clusters, Section 4 presents the experimental
setup used in this paper, and Section 5 presents an investigation of networking
latencies based on it. Finally, Section 6 states our conclusions.

2 Related Work

Some previous research investigated the performance of some network virtualiza-
tion mechanisms, such as the Kubernetes Container Network Interface (CNI) [17,
18]. However, most of these works focused on TCP throughput, UDP sustainable
packet rate or average latencies, instead of worst-case latency. Some work has
also been performed in connecting containers using eBPF to avoid the overhead
introduced by the Linux networking stack [6]. That work’s goal was again to im-
prove the average throughput as measured by iperf or similar tools. Similarly,
other works investigated the usage of eBPF through XDP [20].

The idea of bypassing the Linux networking stack has been considered in
other contexts, too; some works compare the performance of different kernel
bypassing solutions [4], while others [14, 13, 8] optimize the performance of user-
space routers [5]. Some previous works identified the overhead in inter-container
networking caused by traversing the network stack multiple times (as we also
show in Section 5) and proposed some alternative switch architecture (based
on intercepting the system calls used to send and receive packets) to improve
the network throughput [21]. The same idea of intercepting system calls to avoid
traversing the network stack multiple times has also been used in Socksdirect [16].

Only a few works considered the worst-case networking latency or high per-
centiles of such latency [11]. A notable exception to this attitude is Kuber-
neTSN [9], which focuses on optimizing the worst-case network latency, but is
based on TSN networks [7] and uses Polling Mode Drivers (PMD) that consume
at least a dedicated CPU core to busy-wait for network packets. The usage of
TSN technologies in virtualized environments has also been considered in other
works [15].
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In any case, most of the previous works are concerned with networking perfor-
mance in the presence of packet flows at very high rates. In this paper, instead,
the goal is to evaluate the networking latency experienced by packets sent at
lower rates (for example, periodic flows of packets with period equal to 1ms or
more). Moreover, the goal here is to avoid bypassing the networking stack.

3 Background

Motivated by the implementation of a real-time fault-tolerant cloud [1, 3, 12],
this paper focuses on evaluating and analyzing the latencies introduced when
exchanging packets between containerized applications. Containers can be im-
plemented by using two mechanisms provided by the Linux kernel: control groups

(controlling resource accounting and scheduling) and namespaces (controlling
resource visibility). In particular, namespaces are associated with kernel subsys-
tems and resources, and isolate a virtualized copy of a subsystem or resource for
the processes executing inside a namespace; hence, such processes are given the
illusion of having their own dedicated copy of the subsystem or resource. For
example, processes executing in the network namespace see their own virtual-
ized instance of the kernel networking stack, isolated from the network seen by
processes running in different network namespaces. In other words, each network
namespace has its own network interfaces, routing table, netfilter rules, etc...

As a result, thanks to the network namespace, each container cannot directly
communicate with other containers and is isolated from them by not sharing any
network resource between them. Kubernetes introduces the “Pod” abstraction
and associates kernel namespaces to Pods (multiple containers can be in the same
Pod). Also notice that the Linux kernel namespaces should not be confused with
the Kubernetes namespaces, which are a mechanism to group Pods and other
Kubernetes objects controlling their visibility.

A container can then communicate with the host system (or with other con-
tainers) through a virtual ethernet pair (veth), which is a pair of network devices
(endpoints) connected point-to-point through a tunnel. If one of the two end-
points is inserted in a network namespace, then the processes running inside the
namespace can send network packets that will arrive at the other endpoint. The
second endpoint can be: 1) inserted in a different network namespace - creating a
tunnel between the two namespaces, 2) connected to a software bridge - allowing
to forward level-2 packets to other devices connected to the bridge, or 3) left in
the host’s default namespace so that packets arriving to it are forwarded at layer
3 using the host’s routing tables and netfilter tables.

When a container is created, a container manager such as Kubernetes uses a
low-level container runtime such as crun, runc or similar to setup the cgroups
and namespaces for the containers (Kubernetes uses per-Pod network names-
paces, so all the containers in a Pod share their network namespace). Then, the
container can be given network connectivity by creating the appropriate virtual
ethernet pairs, software bridges/switches, etc... In particular, Kubernetes uses a
so-called “CNI plugin” (Container Network Interface plugin) for this. A CNI plu-
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gin is an executable that can perform 5 different operations: ADD, DEL, CHECK, GC,
and VERSION. The ADD operation is used to connect a container to the network
by creating or configuring a virtual ethernet interface inside a network names-
pace. The CNI plugin is hence responsible for handling the virtual ethernet pair,
attaching one of the two endpoints to a software bridge or switch, or defining
IP routes for it and assigning an appropriate IP address to the endpoint that
is inserted in the container’s network namespace. IP address assignment can be
done by an IPAM - IP Address Management - plugin.

This architecture allows Kubernetes to use different runtimes and mecha-
nisms to implement containers and virtual networking. In particular, different
CNI plugins can use various mechanisms to connect containers running on the
same worker node or on different worker nodes:

– Containers running on the same worker node can be connected through a
software bridge (or virtual switch) or by using the IP routing/forwarding
mechanism provided by the host kernel

– Containers running on different worker nodes can be connected by encapsu-
lating their traffic inside IP packets sent by the host (this allows containers
having IP addresses in a network different from the host’s network), or by
directly routing the packets (then, the host needs to have routing tables for
the containers’ IP addresses)

4 Experimental Setup and Preliminary Experiments

The goal of this work is to analyze the delays, with a focus on worst-case laten-
cies, introduced by the most important network virtualization mechanisms used
by CNI plugins. The mechanisms used, virtual ethernet pair, network namespace,
software bridge, etc are investigated how they impact the real-time performance
of Kubernetes CNIs. To this end, some experiments have been performed using
a “ping-pong” test application composed of 2 processes: a “ping” process that
periodically sends UDP packets, and a “pong” process that receives such UDP
packets and immediately sends back UDP replies to the “ping” process. Hence,
the “ping” process can compute the Round-Trip Time (RTT) by measuring the
time between sending a UDP packet and receiving back the reply. The process
sends a large number of packets (100000 packets for the experiments reported
on), computing the worst-case RTT, the average value, and a Cumulative Dis-
tribution Function (CDF) of the experienced RTTs.

The experiments reported in this paper were performed on a testbed com-
posed of 3 servers based on an Intel(R) Xeon(R) E5-2650 CPU running at
2.60 GHz, configured for predictable performance [2]. The servers are based on
Ubuntu 22.04.1 LTS with a 5.15 Linux kernel and run Kubernetes v1.24.3; one
of them is used as a master node, while the other two are used as worker nodes.
The average RTT between the two worker nodes (measured by using the “ping”
Unix command) is 66 µs, and the worst-case is 531 µs. The “Weave Net” CNI
plugin3 is used to connect Kubernetes Pods to the network.

3 https://github.com/weaveworks/weave
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Fig. 1. Experimental CDF of the Round-Trip-Times measured with various kernels
and configurations.

All the tests showed that the first “ping” and “pong” packets always experi-
ence a much larger RTT than all the other packets. Since this effect has been
consistently observed on many different hardware platforms, kernel versions, and
software configurations, we investigated it. Some experiments and measurements
with ftrace4 revealed that this initial delay is caused by the time needed to fill
the IP routing caches in the Linux kernel. Hence, it has been decided to ignore
the first RTT when computing the performance statistics.The first experiments
performed starting the “ping” and “pong” processes in two different Kubernetes
containers showed that the worst-case RTT obtained when the two containers
executed on two different worker nodes was 919 µs. To investigate this large
latency, the experiment was repeated, forcing the Kubernetes scheduler to place
the two containers on the same worker node; in this case, the worst-case RTT
was 517 µs, which again is larger than expected. Hence, the reason for this large
value of the worst-case RTT needed to be investigated.

Some experiments with ftrace revealed that the worst-case RTT was caused
by softirq handling in the Linux kernel. When a network packet is received, most
of the processing is performed in the so-called “softirq context” (similar to the
traditional BSD bottom-half). But, the Linux kernel used for the experiments
can sometimes delay the softirq processing due to the usage of a “ksoftirqd”
kernel thread. Further research revealed that this is a known issue that has been
fixed in recent kernels5. Hence, we backported the fix to the kernel used for the

4 https://www.kernel.org/doc/html/latest/trace/ftrace.html
5 https://lore.kernel.org/lkml/87bkiu34fp.ffs@tglx/T/
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Fig. 2. Two “ping” and “pong” processes communicating through a network loopback
device lo (left figure), executing in two different network namespaces and communi-
cating through a virtual ethernet pair (center figure), and executing in two different
network namespaces and communicating through two virtual ethernet pairs connected
by a software bridge (right figure).

experiments. As a result, the worst-case RTT for containers executing on the
same worker node went down to 140 µs. To further reduce the delays due to
wakeup latencies, we switched to a real-time kernel using the PREEMPT_RT
patchset (version 5.15.107-rt62). This allowed reducing the worst-case RTT to
89 µs. Figure 1 shows the CDFs of the RTTs measured in these experiments.
From the figure, it is possible to see that most of the measured RTTs are near
the average value, but the plots have some long tails, indicating some latencies
much larger than the expected ones. One of the big differences between this
investigation and previous works is that we focus on such long tails. For example,
from the figure it is possible to see that using PREEMPT_RT allows reducing
the length of the tail (the worst-case RTT) at the cost of increasing the average
values (this is a well-known behaviour of real-time kernels). Hence, if the focus
had been on reducing the average RTT, PREEMPT_RT would have been a bad
choice.

To understand the sources of long tails shown in Figure 1 and the reason why
the average RTT between two containers executing on different worker nodes is
larger than the average RTT measured through the ping command, some more
experiments have been performed, as described in the next section.

5 Analysis of the Round-Trip Times

To better understand the RTTs for two containers executing on the same worker
node, we started by evaluating the performance of the various mechanisms used
by Weave Net. Since this CNI plugin uses a Linux software bridge to connect
containers placed on the same working node, the considered mechanisms are
virtual ethernet pairs, the software bridge, and the network namespace.

As a baseline, we evaluated the RTTs when the two processes sending and
receiving UDP packets execute on the same host (without containers) and use
the loopback network interface lo for communicating, as shown in the left part
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Fig. 3. Experimental CDF of the Round-
Trip-Times for UDP packets exchanged
locally with various network virtualiza-
tion mechanisms.
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Fig. 4. Experimental CDF of containers
connected through Weave Net versus soft-
ware bridge with virtual ethernet pairs.

of Figure 2. In this case, the IP routing and forwarding mechanism of the Linux
kernel is used to move packets from one program to the other and vice-versa.

Then, the two processes have been connected through a virtual ethernet
pair, inserting the two endpoints in two different network namespaces (one per
process) as shown in the center part of Figure 2. In this case, the Linux IP
routing and forwarding is not stressed because the two endpoints of the virtual
ethernet pair are directly connected. The overhead introduced by the kernel to
cross the namespaces is evaluated instead.

Finally, the two processes have been executed in dedicated network names-
paces again, using two different virtual ethernet pairs, with one endpoint con-
nected to the software bridge, and the other one inside the dedicated network
namespace, and used by the test process as shown in the right part of Figure 2.
In this case, we measured the overhead of the virtual ethernet pair, network
namespace, and software bridge. The results of this experiment are reported in
Figure 3, which immediately shows some interesting things. First of all, the RTTs
experienced when using a virtual ethernet pair with 2 network namespaces are
generally smaller than the RTTs experienced when using the lo device without
namespaces (hence, the network namespaces do not seem to introduce any over-
head and seem to improve the network performance instead). While this result
first seems to be counterintuitive, some additional investigation showed that it
can be perfectly justified: when connecting the two processes through the lo

device, the host kernel’s routing tables are used to forward the packets while
using the virtual ethernet pair this overhead is not needed (packets sent from
an endpoint are automatically tunneled to the other endpoint). Moreover, the
two network namespaces have no netfilter rules to be applied. Hence, using the
lo device causes much more time to be spent in the fib_table_lookup() and
nf_* kernel functions. The second thing to be noticed is that the configuration
using 2 virtual ethernet pairs and a bridge results in RTTs considerably larger
than the other two configurations. This can be explained by looking at the path
traversed by the packets in the various setups. In the first two configurations,
a packet sent from one process to the other traverses the UDP/IP stack two
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times - one for sending a packet and one for receiving it. On the other hand, in
the bridge-based configuration the packet traverses the UDP/IP stack twice for
going from the process to the bridge and twice for going from the bridge to the
second process.

Finally, all the RTT CDFs for all configurations are characterized by long tails
with similar sizes. We further investigated this by using ftrace to understand
the source of those large worst-case RTTs. It turned out that the long delays
were caused by interference from other, unrelated, softirqs. PREEMPT_RT ker-
nels reduce the interference on real-time tasks caused by softirq processing by
allowing softirqs to be preempted by user processes. However, some of the code
in the Linux kernel networking stack uses spin_lock_bh() to protect critical
sections, and this function blocks the invoking task if a softirq is currently run-
ning, waiting until the softirq is terminated. This causes a so-called priority

inversion [19]: if a high-priority task needs to process a network packet while
a low-priority softirq is executing, the high-priority task blocks until the low-
priority softirq is finished. Since softirqs are per-CPU-core, if the sender process
and the receiver process run on two different cores a single packet can suffer 2

interferences from softirqs; hence, an RTT can be increased by 4 interferences
from softirqs (2 times for the “ping” packet and 2 times for the “pong” packet).

Since the inspection of ftrace data revealed that a softirq might require
up to 20 µs to be processed, this is about 80 µs per RTT independent of the
network virtualization mechanism. To avoid this issue, it would be necessary to
remove the calls to spin_lock_bh() from the networking stack or to bypass the
networking stack by using eBPF, XDP, or DPDK-like techniques.

Figure 4 compares the performance of the bridged virtual ethernet pairs with
the performance of containers connected through Weave Net. The difference
between these RTTs has been investigated, and turned out to be due to the
Netfilter rules installed by Weave Net.

Finally, the differences between the RTTs for containers running on the same
worker node and for containers running on different worker nodes (see the dif-
ference between the light blue line and the green line in Figure 1) have been
investigated. It turned out that such latencies are due to the transmission of the
packets on the network and to VXLAN encapsulation.

6 Conclusions

This paper presented an analysis of the latencies introduced by the most im-
portant mechanisms used by Kubernetes CNI plugins such as Weave Net to
interconnect Kubernetes containers. The results of this investigation show that
while the average latencies are caused by the packet routing and filtering mech-
anisms used to implement virtual networking, the worst-case latency is caused
by some interference by the softirq mechanism on the kernel’s networking stack.

In particular, the biggest contributions to the average latencies come from
the fib_table_lookup() function used to access IP forwarding tables and from
applying Netfilter rules. Moreover, the software bridges (or virtual ethernet
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switches) used to forward packets between containers force such packets to tra-
verse the network stack multiple times, introducing more overhead. On the other
hand, the large worst case for the latency experienced during inter-container
communications (i.e., the long tail in the CDFs of such latency) is caused by the
usage of spin_lock_bh(), which ends up waiting for the termination of currently
executing softirqs in the Linux networking stack.

As a future work we plan to investigate the removal of softirq synchroniza-
tion from the network stack, to reduce the worst-case communication latencies
experienced by containerized applications.
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